17 #include "ann_utils.h" 28 void initAnnLibrary();
33 std::fill(v.begin(), v.end(), T());
41 typedef void (*EvaluateLayer)(
const vector<float>& in,
46 extern EvaluateLayer evaluateLayer;
51 for (
float& value : out)
65 std::random_device rd;
66 std::default_random_engine rnd(rd());
67 std::uniform_real_distribution<float> dist(-range, range);
71 for (
float& value : w.values)
74 for (
float& value : w.values)
void randomize(Matrix &w)
Randomize the values in a Matrix.
Definition: ann_dynamic.h:62
void reset(std::vector< T > &v)
Reset the values in a vector to 0.
Definition: ann_dynamic.h:32
void activateLayer(vector< float > &out)
Apply the activation function over a set of values.
Definition: ann_dynamic.h:50
float roundWeight(float w)
Ajust a value by rounding to Config::connection_resolution.
Definition: ann_utils.h:63
float weights_density
"Probability of non-zero weights (if sparse_weights is true)"
Definition: ann_utils.h:55
Artificial Neural Networks (ANN) building blocks.
Definition: ann_activation_functions.cpp:17
float activate(float x)
Applies the selected activation function.
Definition: ann_activation_functions.h:65
float connection_range
"Initial connection values range"
Definition: ann_utils.h:44
bool sparse_weights
"Generate sparse weights for the initial (random) population"
Definition: ann_utils.h:50