Darwin Neuroevolution Framework
population.h
1 // Copyright 2018 The Darwin Neuroevolution Framework Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #pragma once
16 
17 #include "cne.h"
18 
19 #include <core/ann_activation_functions.h>
20 #include <core/utils.h>
21 #include <core/darwin.h>
22 #include <core/evolution.h>
23 #include <core/logging.h>
24 #include <core/parallel_for_each.h>
25 
26 #include <algorithm>
27 #include <atomic>
28 #include <random>
29 #include <vector>
30 #include <memory>
31 using namespace std;
32 
33 namespace cne {
34 
35 template <class GENOTYPE>
36 class Population : public darwin::Population {
37  class GenotypeFactory : public selection::GenotypeFactory {
38  public:
39  void init(Population* population, GENOTYPE* genotype) {
40  population_ = population;
41  genotype_ = genotype;
42  }
43 
44  void createPrimordialSeed() override {
45  genotype_->createPrimordialSeed();
46  genotype_->genealogy = darwin::Genealogy("p", {});
47  }
48 
49  void replicate(int parent_index) override {
50  *genotype_ = population_->genotypes_[parent_index];
51  genotype_->genealogy = darwin::Genealogy("r", { parent_index });
52  }
53 
54  void crossover(int parent1, int parent2, float preference) override {
55  genotype_->inherit(
56  population_->genotypes_[parent1], population_->genotypes_[parent2], preference);
57  genotype_->genealogy = darwin::Genealogy("c", { parent1, parent2 });
58  }
59 
60  void mutate() override {
61  genotype_->mutate();
62  genotype_->genealogy.genetic_operator += "m";
63  }
64 
65  private:
66  Population* population_ = nullptr;
67  GENOTYPE* genotype_ = nullptr;
68  };
69 
70  class GenerationFactory : public selection::GenerationFactory {
71  public:
72  GenerationFactory(Population* population, vector<GENOTYPE>& next_generation) {
73  factories_.resize(next_generation.size());
74  for (size_t i = 0; i < factories_.size(); ++i) {
75  factories_[i].init(population, &next_generation[i]);
76  }
77  }
78 
79  size_t size() const override { return factories_.size(); }
80  GenotypeFactory* operator[](size_t index) override { return &factories_[index]; }
81 
82  private:
83  vector<GenotypeFactory> factories_;
84  };
85 
86  public:
87  Population() {
88  switch (g_config.selection_algorithm.tag()) {
89  case SelectionAlgorithmType::RouletteWheel:
90  selection_algorithm_ = make_unique<selection::RouletteSelection>(
91  g_config.selection_algorithm.roulette_wheel);
92  break;
93  case SelectionAlgorithmType::CgpIslands:
94  selection_algorithm_ = make_unique<selection::CgpIslandsSelection>(
95  g_config.selection_algorithm.cgp_islands);
96  break;
97  case SelectionAlgorithmType::Truncation:
98  selection_algorithm_ = make_unique<selection::TruncationSelection>(
99  g_config.selection_algorithm.truncation);
100  break;
101  default:
102  FATAL("Unexpected selection algorithm type");
103  }
104  }
105 
106  size_t size() const override { return genotypes_.size(); }
107 
108  int generation() const override { return generation_; }
109 
110  GENOTYPE* genotype(size_t index) override { return &genotypes_[index]; }
111 
112  const GENOTYPE* genotype(size_t index) const override { return &genotypes_[index]; }
113 
114  void createPrimordialGeneration(int population_size) override {
115  core::log("Resetting evolution ...\n");
116 
117  darwin::StageScope stage("Create primordial generation");
118 
119  generation_ = 0;
120 
121  genotypes_.resize(population_size);
122  pp::for_each(genotypes_,
123  [](int, GENOTYPE& genotype) { genotype.createPrimordialSeed(); });
124 
125  selection_algorithm_->newPopulation(this);
126  core::log("Ready.\n");
127  }
128 
129  void createNextGeneration() override {
130  darwin::StageScope stage("Create next generation");
131 
132  ++generation_;
133  vector<GENOTYPE> next_generation(genotypes_.size());
134  GenerationFactory generation_factory(this, next_generation);
135  selection_algorithm_->createNextGeneration(&generation_factory);
136  std::swap(genotypes_, next_generation);
137  }
138 
139  vector<size_t> rankingIndex() const {
140  vector<size_t> ranking_index(genotypes_.size());
141  for (size_t i = 0; i < ranking_index.size(); ++i) {
142  ranking_index[i] = i;
143  }
144  // sort results by fitness (descending order)
145  std::sort(ranking_index.begin(), ranking_index.end(), [&](size_t a, size_t b) {
146  return genotypes_[a].fitness > genotypes_[b].fitness;
147  });
148  return ranking_index;
149  }
150 
151  private:
152  vector<GENOTYPE> genotypes_;
153  int generation_ = 0;
154 
155  unique_ptr<selection::SelectionAlgorithm> selection_algorithm_;
156 };
157 
158 } // namespace cne
void log(const char *format_string, ARGS &&... args)
Outputs a formatted log message.
Definition: logging.h:45
A population implementation encapsulates the fixed-size set of genotypes, together with the rules for...
Definition: darwin.h:161
Conventional Neuroevolution (CNE) populations.
Definition: brain.h:26
STL namespace.
A scope-based Stage wrapper.
Definition: evolution.h:442
Models the genealogy information of a genotype.
Definition: darwin.h:93
void for_each(T &array, const Body &loop_body)
Iterates over an array, with support for parallel execution.
Definition: parallel_for_each.h:55
string genetic_operator
Name of the genetic operator used to create the genotype from its parents.
Definition: darwin.h:95