Darwin Neuroevolution Framework
genotype.h
1 // Copyright 2018 The Darwin Neuroevolution Framework Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #pragma once
16 
17 #include "neat.h"
18 
19 #include <core/darwin.h>
20 
21 #include <array>
22 #include <unordered_set>
23 #include <vector>
24 using namespace std;
25 
26 namespace neat {
27 
28 enum LstmWeightIds { Wi, Ui, Bi, Wf, Uf, Bf, Wo, Uo, Bo, Wc, Uc, Bc, Nlstm };
29 
30 using LstmWeights = array<float, Nlstm>;
31 
32 // NOTE: nodes are implicitly numbered as follows:
33 // bias node : 0
34 // input nodes : [1, INPUTS]
35 // output nodes : [INPUTS + 1, INPUTS + OUTPUTS]
36 // hidden nodes : [INPUTS + OUTPUTS + 1, nodes_count)
37 
38 using NodeId = size_t;
39 using Innovation = size_t;
40 
41 constexpr NodeId kBiasNodeId = 0;
42 constexpr NodeId kFirstInput = 1;
43 
44 // a NEAT gene represents one link in the ANN
45 struct Gene {
46  Innovation innovation = 0;
47  NodeId in = 0;
48  NodeId out = 0;
49  float weight = 0;
50  bool enabled = true;
51  bool recurrent = false;
52 
53  Gene(NodeId in, NodeId out, float weight, Innovation innovation)
54  : innovation(innovation), in(in), out(out), weight(weight) {}
55 
56  Gene() = default;
57 
58  friend void to_json(json& json_obj, const Gene& gene);
59  friend void from_json(const json& json_obj, Gene& gene);
60 };
61 
62 class Genotype : public darwin::Genotype {
63  // the "white/gray/black" DFS colors
64  enum class VisitedColor {
65  NotYetVisited,
66  Exploring,
67  Visited,
68  };
69 
70  public:
71  vector<Gene> genes;
72  size_t nodes_count = 0; // total, including bias/in/out/hidden
73 
74  LstmWeights lw = {};
75 
76  int age = 0;
77 
78  Genotype();
79 
80  unique_ptr<darwin::Genotype> clone() const override;
81 
82  void reset() override;
83 
84  // generate an initial genotype with no hidden nodes
85  // (we generate a fully connected network with random weights)
86  //
87  // NOTE: there's an implicit contract that the innovation values
88  // are consistent for the generated genes
89  //
90  Innovation createPrimordialSeed();
91 
92  void mutate(atomic<Innovation>& next_innovation, bool weights_only = false);
93 
94  // combine the genes from two parents, renumbering the hidden nodes
95  void inherit(const Genotype& parent1, const Genotype& parent2, float preference);
96 
97  // calculates the compatibility distance between
98  // this genotype and a reference one
99  // (as described in the NEAT paper)
100  double compatibility(const Genotype& ref) const;
101 
102  unique_ptr<darwin::Brain> grow() const override;
103 
104  json save() const override;
105  void load(const json& json_obj) override;
106 
107  private:
108  template <class RND>
109  void mutateWeights(RND& rnd) {
110  std::bernoulli_distribution dist_mutate(g_config.weight_mutation_chance);
111 
112  // CONSIDER: trimming (disabling?) links with weight < epsilon?
113  for (auto& gene : genes)
114  if (dist_mutate(rnd))
115  ann::mutateValue(gene.weight, rnd, ann::g_config.mutation_std_dev);
116 
117  if (g_config.use_lstm_nodes) {
118  for (float& w : lw)
119  if (dist_mutate(rnd))
120  ann::mutateValue(w, rnd, ann::g_config.mutation_std_dev);
121  }
122  }
123 
124  // returns true if we can reach dst from src (or if dst == src)
125  // using only non-recurrent links (so traversing a DAG, no cycles)
126  bool canReach(NodeId src, NodeId dst, unordered_set<NodeId>& visited) const;
127 
128  // returns true if it detects any cycles (using node_id as search root)
129  bool detectCycles(NodeId node_id, vector<VisitedColor>& visited) const;
130 
131  template <class RND>
132  void mutateNewLinks(RND& rnd, atomic<Innovation>& next_innovation) {
133  const NodeId kInputFirst = 1;
134  const NodeId kOutputFirst = 1 + g_inputs;
135 
136  std::bernoulli_distribution dist_mutate(g_config.new_link_chance);
137  if (dist_mutate(rnd)) {
138  std::uniform_int_distribution<NodeId> dist_in_node(kInputFirst, nodes_count - 1);
139  std::uniform_int_distribution<NodeId> dist_out_node(kOutputFirst, nodes_count - 1);
140 
141  NodeId in = dist_in_node(rnd);
142  NodeId out = dist_out_node(rnd);
143 
144  const float range = ann::g_config.connection_range;
145  std::uniform_real_distribution<float> dist_weight(-range, range);
146 
147  // check to see if the link already exists
148  for (Gene& gene : genes)
149  if (gene.in == in && gene.out == out) {
150  // re-enable and mutate disabled links
151  if (!gene.enabled) {
152  gene.enabled = true;
153  gene.weight = ann::roundWeight(dist_weight(rnd));
154  }
155  return;
156  }
157 
158  // create a new link
159  Gene new_gene(in, out, ann::roundWeight(dist_weight(rnd)), next_innovation++);
160  unordered_set<NodeId> visited;
161  new_gene.recurrent = canReach(out, in, visited);
162  genes.push_back(new_gene);
163  }
164  }
165 
166  template <class RND>
167  void mutateNewNodes(RND& rnd, atomic<Innovation>& next_innovation) {
168  std::bernoulli_distribution dist_mutate(g_config.new_node_chance);
169  if (dist_mutate(rnd)) {
170  // pick a random gene to split
171  std::uniform_int_distribution<size_t> dist_gene_index(0, genes.size() - 1);
172  auto& gene = genes[dist_gene_index(rnd)];
173 
174  const float range = ann::g_config.connection_range;
175  std::uniform_real_distribution<float> dist_weight(-range, range);
176 
177  NodeId new_node_id = nodes_count++;
178  Gene pre_link(gene.in, new_node_id, 1.0f, next_innovation++);
179  pre_link.recurrent = false;
180  Gene post_link(new_node_id, gene.out, gene.weight, next_innovation++);
181  post_link.recurrent = gene.recurrent;
182  gene.enabled = false;
183  genes.push_back(pre_link);
184  genes.push_back(post_link);
185 
186  if (g_config.implicit_bias_links) {
187  Gene bias(kBiasNodeId,
188  new_node_id,
189  ann::roundWeight(dist_weight(rnd)),
190  next_innovation++);
191  genes.push_back(bias);
192  }
193 
194  if (g_config.recurrent_hidden_nodes) {
195  Gene self_link(new_node_id,
196  new_node_id,
197  ann::roundWeight(dist_weight(rnd)),
198  next_innovation++);
199  self_link.recurrent = true;
200  genes.push_back(self_link);
201  }
202  }
203  }
204 };
205 
206 } // namespace neat
Definition: evolution_window.h:22
void reset(std::vector< T > &v)
Reset the values in a vector to 0.
Definition: ann_dynamic.h:32
STL namespace.
NeuroEvolution of Augmenting Topologies (NEAT)
Definition: brain.cpp:20
void mutateValue(T &value, RND &rnd, T std_dev)
Mutate a value.
Definition: ann_utils.h:73
float roundWeight(float w)
Ajust a value by rounding to Config::connection_resolution.
Definition: ann_utils.h:63
float connection_range
"Initial connection values range"
Definition: ann_utils.h:44
The interface to the population-specific "genetic material", the Genotype
Definition: darwin.h:126