Darwin Neuroevolution Framework
cne.h
1 // Copyright 2018 The Darwin Neuroevolution Framework Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #pragma once
16 
17 #include <core/ann_activation_functions.h>
18 #include <core/utils.h>
19 #include <core/darwin.h>
20 #include <core/properties.h>
21 #include <core/stringify.h>
22 #include <core/roulette_selection.h>
23 #include <core/cgp_islands_selection.h>
24 #include <core/truncation_selection.h>
25 
26 #include <memory>
27 #include <vector>
28 using namespace std;
29 
30 namespace cne {
31 
32 void init();
33 
34 enum class CrossoverOp {
35  Mix,
36  Split,
37  RowSplit,
38  ColSplit,
39  RowOrColSplit,
40  PrefRowSplit,
41  PrefAverage,
42  RowMix,
43  ColMix,
44  RowOrColMix,
45  Quadrants,
46  BestParent,
47  Randomize,
48 };
49 
50 inline auto customStringify(core::TypeTag<CrossoverOp>) {
52  { CrossoverOp::Mix, "mix" },
53  { CrossoverOp::Split, "split" },
54  { CrossoverOp::RowSplit, "row_split" },
55  { CrossoverOp::ColSplit, "col_split" },
56  { CrossoverOp::RowOrColSplit, "row_or_col_split" },
57  { CrossoverOp::PrefRowSplit, "pref_row_split" },
58  { CrossoverOp::PrefAverage, "pref_average" },
59  { CrossoverOp::RowMix, "row_mix" },
60  { CrossoverOp::ColMix, "col_mix" },
61  { CrossoverOp::RowOrColMix, "row_or_col_mix" },
62  { CrossoverOp::Quadrants, "quadrants" },
63  { CrossoverOp::BestParent, "best_parent" },
64  { CrossoverOp::Randomize, "randomize" },
65  };
66  return stringify;
67 }
68 
69 enum class MutationOp {
70  IndividualCells,
71  AllCells,
72  RowOrCol,
73  Row,
74  Col,
75  RowAndCol,
76  SubRect,
77 };
78 
79 inline auto customStringify(core::TypeTag<MutationOp>) {
81  { MutationOp::IndividualCells, "individual_cells" },
82  { MutationOp::AllCells, "all_cells" },
83  { MutationOp::RowOrCol, "row_or_col" },
84  { MutationOp::Row, "row" },
85  { MutationOp::Col, "col" },
86  { MutationOp::RowAndCol, "row_and_col" },
87  { MutationOp::SubRect, "sub_rect" },
88  };
89  return stringify;
90 }
91 
92 enum class SelectionAlgorithmType {
93  RouletteWheel,
94  CgpIslands,
95  Truncation,
96 };
97 
98 inline auto customStringify(core::TypeTag<SelectionAlgorithmType>) {
100  { SelectionAlgorithmType::RouletteWheel, "roulette_wheel" },
101  { SelectionAlgorithmType::CgpIslands, "cgp_islands" },
102  { SelectionAlgorithmType::Truncation, "truncation" },
103  };
104  return stringify;
105 }
106 
107 struct SelectionAlgorithmVariant
108  : public core::PropertySetVariant<SelectionAlgorithmType> {
109  CASE(SelectionAlgorithmType::RouletteWheel,
110  roulette_wheel,
112  CASE(SelectionAlgorithmType::CgpIslands,
113  cgp_islands,
115  CASE(SelectionAlgorithmType::Truncation,
116  truncation,
118 };
119 
120 struct Config : public core::PropertySet {
121  PROPERTY(activation_function,
124  "Main activation function");
125 
126  PROPERTY(gate_activation_function,
129  "Activation function used for cell gates (ex. LSTM)");
130 
131  // mutation parameters
132  PROPERTY(mutation_chance, float, 0.01f, "Mutation chance");
133 
134  // the sizes of each hidden layers, if any
135  PROPERTY(hidden_layers, vector<size_t>, {}, "Hidden layers (size of each layer)");
136 
137  // genetic operators
138  PROPERTY(crossover_operator, CrossoverOp, CrossoverOp::Quadrants, "Crossover operator");
139  PROPERTY(mutation_operator,
140  MutationOp,
141  MutationOp::IndividualCells,
142  "Mutation operator");
143 
144  PROPERTY(normalize_input, bool, false, "Normalize input values");
145  PROPERTY(normalize_output, bool, false, "Normalize output values");
146 
147  VARIANT(selection_algorithm,
148  SelectionAlgorithmVariant,
149  SelectionAlgorithmType::Truncation,
150  "Selection algorithm");
151 };
152 
153 extern Config g_config;
154 
155 // TODO: design a better interface
156 extern size_t g_inputs;
157 extern size_t g_outputs;
158 
159 // genetic operators
160 void crossoverOperator(ann::Matrix& child,
161  const ann::Matrix& parent1,
162  const ann::Matrix& parent2,
163  float preference);
164 
165 void mutationOperator(ann::Matrix& w, float mutation_std_dev);
166 
167 // base class for fully connected ANN layers
168 struct AnnLayer {
169  vector<float> values;
170 
171  AnnLayer(size_t size) : values(size) {}
172  virtual ~AnnLayer() = default;
173 
174  virtual void evaluate(const vector<float>& inputs) = 0;
175  virtual void resetState() = 0;
176 };
177 
178 } // namespace cne
ActivationFunction
The types of supported activation functions.
Definition: ann_activation_functions.h:28
Conventional Neuroevolution (CNE) populations.
Definition: brain.h:26
STL namespace.
Roulette wheel selection configuration.
Definition: roulette_selection.h:23
Hyperbolic tangent (tanh)
The foundation for data structures supporting runtime reflection.
Definition: properties.h:388
Configuration for CgpIslandsSelection.
Definition: cgp_islands_selection.h:26
A variant type (tagged-union) with PropertySet fields.
Definition: properties.h:194
Handles types with a fixed, known set of values (enumerations for example)
Definition: stringify.h:85
Truncation selection configuration.
Definition: truncation_selection.h:26
const Stringify< T > * stringify()
Returns the stringifier for type T.
Definition: stringify.h:166